
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

1 Daniel Llamocca

Custom Peripheral for the AXI4-Lite Interface

OBJECTIVES
▪ Create a Hardware/Software System using the ZYBO Board or the ZYBO Z7-10 Board.
▪ Create custom VHDL peripherals with an AXI4-Lite Interface.
▪ Integrate a VHDL peripheral in a Block Based Design in Vivado 2019.1.
▪ Create a software application in SDK that can transfer data from/to the custom peripheral.

ZYBO/ZYBO Z7-10 BOARD SETUP FOR HARDWARE/SOFTWARE CO-DESIGN

▪ It is assumed that the definition files (available in vivado-boards-mastes.zip) have been installed in Vivado.

▪ ZYBO: PS_CLK input: 50 MHz. PL_CLK input: 125 MHz. By default, a 100 MHz is generated for the PL fabric.
▪ ZYBO Z7-10: PS_CLK input: 33.33 MHz. PL_CLK input: 125 MHz. By default, a 50 MHz clock is generated for the PL fabric.

▪ Refer to the Zynq Book Tutorial: IP Creation → Creating IP in VHDL for detailed step-by-step instructions on how to

integrate a custom hardware in Vivado.

PIXEL PROCESSOR: CUSTOM PERIPHERAL FOR AXI4-LITE INTERFACE

CONSIDERATIONS
▪ We will use the Pixel Processor with 𝑁𝐶 = 4,𝑁𝐼 = 𝑁𝑂 = 8, 𝐹 = 1.

▪ List of files to use:
✓ mypix_v1_0.vhd: AXI4-Lite peripheral (top file, Vivado template)

✓ mypix_v1_0_S00_AXI.vhd: AXI4-Lite interface description (edited Vivado template)

✓ static_ip.vhd: Pixel Processor IP with connection to the Slave Registers.

✓ LUT_group.vhd: Top file of the Pixel Processor IP

✓ LUT_NItoNO.vhd, LUT_NIto1.vhd, pack_xtras.vhd: Other files that make up the Pixel Processor.

✓ LUT_values8to8.txt: LUT values in a text file.

✓ tb_mypixAXI4Lite.vhd: Testbench for AXI4-Lite peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. This allows us to fix peripheral errors.

▪ We need two Slave Registers to process data through this Pixel Processor circuit (one for writing data, one for reading data).

IP GENERATION
▪ Create a new project in Vivado: myaxilitepix.

✓ Make sure the default language is VHDL, so that the system wrapper and template files are created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.

= 00

LUT
8-to-8

LUT
8-to-8

LUT
8-to-8

upix_ip

LUT
8-to-8

Slave
Register 0

Slave
Register 1

E E

sl
v
_
re

g
_
w

re
n

a
x
i_

a
w

a
d
d
r(

3
..

2
)

= 01

sl
v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

2

S_AXI_ACLK

S_AXI_ARESETN

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

4

32

static_ip.vhd

http://www.secs.oakland.edu/~llamocca/dig_library/arith/pix_proc.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

2 Daniel Llamocca

✓ Create a new AXI4 Peripheral. Name: mypix. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Lite, 32 bits, 4 registers (we just need 2, but 4 is the minimum).
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be mypix_v1_0_S00_AXI.vhd). Modify the project by:

 Using only the required registers, i.e., commenting out VHDL code that specifies unused registers and instantiating
(port-map) the pixel processor IP in the file mypix_v1_0_S00_AXI.vhd. As a shortcut, you can just replace this file

with the file mypix_v1_0_S00_AXI.vhd file that is available for download.

 Adding the extra files to the folder /hdl in /ip_repo/mypix_1.0 and adding these source files (including the .txt file)

to the Vivado project. * Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated this code in a different project.

✓ The following instructions are detailed in the Zynq Book Tutorial: IP → Creating IP in VHDL (Return to IP Packager,

Review and Package):

 Go to Package IP - mypix: Identify areas that need refresh. In this project, we only added files, so click on File

Groups. Then click on Merge changes from File Group Wizard.

 Go to Review and Package → Edit packaging settings: Check Create archive of IP, Close IP Packager Window, Add

IP to the IP Catalog in the current project (don’t check Delete project after Packaging). Then, click on Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Lite Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO

▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYPIX peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper).

▪ Synthesize, implement, and generate the bitstream.
✓ An error will be reported when Synthesizing. Vivado only copies VHDL files from the IP folder to the embedded project

folder (located inside the /<peripheral name>.srcs/…/ipshared folder). As a result, the LUT_NItoNO.vhd file cannot

find the LUT_values.txt. We need to place this text file in the same folder as the LUT_NItoNO.vhd file.

✓ This folder location is available by opening the LUT_NItoNO.vhd file. You need to find this file in the design structure or

via the Vivado error which will point to the LUT_NItoNO.vhd file. After copying the .txt file, you can Synthesize again.

✓ In general, this procedure is to be followed for any ancillary file (e.g. text file) used by the VHDL files.
▪ Export hardware (with bitstream) and launch SDK

SOFTWARE APPLICATION IN SDK
▪ Use Tutorial Unit 2 for instructions on how to create and test a software application on SDK.
▪ Navigate to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\mypix_1.0 and click ok.

▪ Create a new SDK application: pixtest. Then, copy the following file into the /src folder: pixproc_test.c. This file will

test all the possible inputs to each 8-bit LUT (0x00 to 0xFF): The 32-bit input word will have four identical bytes. Example:

✓ Input = 0x01010101, Expected Result = 0x10101010

✓ Input = 0x03030303, Expected Result = 0x1C1C1C1C

✓ Input = 0xFDFDFDFD, Expected Result = 0xFEFEFEFE

PIPELINED DIVIDER: CUSTOM PERIPHERAL FOR AXI4-LITE

CONSIDERATIONS
▪ We will use the Pipelined Integer Divider with 𝑁 = 16,𝑀 = 16.

▪ List of files to use:
✓ mydiv_v1_0.vhd: AXI4-Lite peripheral (top file). This is the same file generated by Vivado.

✓ mydiv_v1_0_S00_AXI.vhd: AXI4-Lite Interface description. This file is generated by Vivado, but it has been edited to

include the Pipelined Divider IP (divpip_ip.vhd).

✓ divpip_ip.vhd: Pipelined Divider with some interfacing (FSM) to the Slave Registers for AXI4-Lite Interfacing.

✓ res_div_pip.vhd: Top file of the Pipelined Divider IP.

✓ fulladd.vhd, my_pashiftreg.vhd, unit_proc.vhd, dffe.vhd: Other files that make up the Pipelined Divider.

✓ tb_mydivAXI4Lite.vhd: Testbench for AXI4-Lite peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. This allows us to fix peripheral errors.
▪ We need 3 Slave Registers to process data through this Pipelined Divider circuit (one for writing data, two for reading data).

http://www.secs.oakland.edu/~llamocca/dig_library/arith/rest_integer_div.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

3 Daniel Llamocca

IP GENERATION
▪ Create a new project in Vivado: myaxilitediv.

✓ Make sure the default language is VHDL, so that the system wrapper is created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: mydiv. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Lite, 32 bits, 4 registers (we just need 3, but 4 is the minimum).
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be mydiv_v1_0_S00_AXI.vhd). Modify the project by:

 Using only the required registers, i.e., commenting out VHDL code that specifies unused registers and instantiating
(port-map) the pipelined divider IP in the file mydiv_v1_0_S00_AXI.vhd. As a shortcut, you can just replace this file

with the file mydiv_v1_0_S00_AXI.vhd file that is available for download.

 Adding the extra files to the folder /hdl in /ip_repo/mydiv_1.0 and adding these source files to the Vivado project.

* Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.

✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated this code in a different project.

✓ Go to Package IP – mydiv -→ File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Lite Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO

▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYDIV peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper).

▪ Synthesize, implement, and generate the bitstream.
▪ Export hardware (with bitstream) and launch SDK

SOFTWARE APPLICATION IN SDK
▪ Navigate to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\mydiv_1.0 and click ok.

▪ Create a new SDK application: divtest. Then, copy the following file into the /src folder: div_test.c. This file will test

three integer divisions:
✓ A = 0x008C, B = 0x0009. Expected Result: Q = 0x000F, R = 0x0005.

✓ A = 0x00BB, B = 0x000A. Expected Result: Q = 0x0012, R = 0x0007.

✓ A = 0x0FEA, B = 0x0371. Expected Result: Q = 0x0004, R = 0x0226.

= 00

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

2

4

32

S_AXI_ACLK

Slave
Register 0

E E

sl
v
_
re

g
_
w

re
n

a
x
i_

a
w

a
d
d
r(

3
..

2
) sl

v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

01

10

Pipelined Divider

v

E

A

B

Q

R

FSM

slv_reg_wren

S1

1

FSM @ S_AXI_ACLK

S_AXI_ARESETN=0

slv _reg_wren

E 1

0

S2

0

slv _reg_wren
1

Slave Register 1 = 01
Slave Register 2 = 10

S_AXI_ARESETN

E

0

33

E

N=M=16

divpip_ip.vhd

resetn

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

4 Daniel Llamocca

PIPELINED 2D CONVOLUTION KERNEL: CUSTOM PERIPHERAL FOR AXI4-LITE

CONSIDERATIONS
▪ We will use the Pipelined 2D Convolution Kernel with 𝐵 = 𝐶 = 8,𝑁 = 3,𝑅𝐸𝑃 = "𝑈𝑁𝑆𝐼𝐺𝑁𝐸𝐷".
▪ List of files to use:

✓ myconv2_v1_0.vhd: AXI4-Lite Peripheral (top file). This is the same file generated by Vivado.

✓ myconv2_v1_0_S00_AXI.vhd: AXI4-Lite Interface description. This file is generated by Vivado, but it has been edited to

include the 2D Convolution Kernel IP.
✓ myconv2_ip.vhd: 2D Convolution Kernel IP with some interfacing (FSM) to the Slave Registers for AXI4-Lite Interfacing.

In addition, here the input matrix H of the 2D Convolution Kernel is fixed to:

[
0𝑥02 0𝑥0𝐵 0𝑥02
0𝑥05 0𝑥0𝐸 0𝑥05
0𝑥02 0𝑥0𝐵 0𝑥02

]

✓ myconv2.vhd: Top file of the 2D Convolution Kernel IP.
✓ adder_tree.vhd, my_pashiftreg.vhd, my_rege.vhd, my_addsub.vhd, fulladd.vhd, dffe.vhd,

pack_xtras.vhd: Files that make up the Pipelined 2D Convolution Kernel.

✓ tb_myconv2_lite.vhd: Testbench for AXI4-Lite peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. This allows us to fix peripheral errors.
▪ The Pipelined 2D Convolution Kernel requires 4 Slave Registers for processing data (3 for writing data, 1 for reading data).

IP GENERATION
▪ Create a new project in Vivado: myaxiliteconv2.

✓ Make sure the default language is VHDL, so that the system wrapper is created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: myconv2. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Lite, 32 bits, 4 registers.
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be myconv2_v1_0_S00_AXI.vhd). Modify the project by:

 Using only the required registers, i.e., commenting out VHDL code that specifies unused registers and instantiating
(port-map) the pixel processor IP in the file myconv2_v1_0_S00_AXI.vhd. As a shortcut, you can just replace this file

with the file myconv2_v1_0_S00_AXI.vhd file that is available for download.

 Adding the extra files to the folder /hdl in /ip_repo/myconv2_1.0 and adding these source files to the Vivado

project. * Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated this code in a different project.

✓ Go to Package IP – myconv2 → File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ You will return to the original Vivado Project.

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

2

4

32

S_AXI_ACLK

Slave
Registers

E

axi_awaddr(3..2)

Conv. Kernel

v
E

H

D F

FSM

slv_reg_wren

S_AXI_ARESETN

0

21

E

B=C=8
3x 3

Slave
Register 3

sl
v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

=10

E

E

0

1

2

=01 =00

32

32

72

E

=1132 8

3

E

72

02 0B 02

05 0E 05

02 0B 02

S1

1

FSM at S_AXI_ACLK

S_AXI_ARESETN=0

slv _reg_wren 0

S2

0

slv _reg_wren
1

K=2 K K+1

K 0

S4

v

no

yes

1 0

E 1

S3

resetn

myconv2_ip.vhd

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_8/myconv2.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

5 Daniel Llamocca

CREATING A BLOCK DESIGN PROJECT IN VIVADO

▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYCONV2 peripheral.

▪ Click on Run Block Automation and Run Connection Automation.

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper).

▪ Synthesize, implement, and generate the bitstream.
▪ Export hardware (with bitstream) and launch SDK

SOFTWARE APPLICATION IN SDK
▪ Navigate to Xilinx Tools → Repositories, click on New and then browse to the folder \ip_repo\myconv2_1.0 and click ok.

▪ Create a new SDK application: conv2test. Then, copy the following file into the /src folder: myconv2_test.c. This file

will test three input cases:
✓ D = [A1 B2 C3

 D4 F0 E1 Expected Result: 0x00102B82

 D2 C3 B3].

✓ D = [F1 09 05

 0A C3 02 Expected Result: 0x001018FF

 A1 F0 1C].

▪ Note that the application also measures elapsed time (us) between input data is written and output data is retrieved.

